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Abstract. We show how the recently proposed effective theory for a Quantum Hall system at “paired
states” filling ν = 1 [1,2], the twisted model (TM), well adapts to describe the phenomenology of Josephson
Junction ladders (JJL) in the presence of defects. In particular it is shown how naturally the phenomenon
of flux fractionalization takes place in such a description and its relation with the discrete symmetries
present in the TM. Furthermore we focus on “closed” geometries, which enable us to analyze the topological
properties of the ground state of the system in relation to the presence of half flux quanta.

PACS. 11.25.Hf Conformal field theory, algebraic structures – 02.20.Sv Lie algebras of Lie groups –
03.65.Fd Algebraic methods

1 Introduction

Arrays of weakly coupled Josephson junctions provide
an experimental realization of the two dimensional (2D)
XY model physics. A Josephson junction ladder (JJL) is
the simplest quasi-one dimensional version of an array
in a magnetic field [3]; recently such a system has been
the subject of many investigations because of its possi-
bility to display different transitions as a function of the
magnetic field, temperature, disorder, quantum fluctua-
tions and dissipation. In this paper we focus on the phe-
nomenon of fractionalization of the flux quantum hc/2e in
a fully frustrated JJL, the basic question being how the
phenomenon of Cooper pair condensation can cope with
properties of charge (flux) fractionalization, typical of a
low dimensional system with a discrete Z2 symmetry.

We must recall that charge fractionalization has been
successfully hypothesized by R. Laughlin to describe the
ground state of a strongly correlated 2D electron system,
a quantum Hall fluid, at fractional fillings ν = 1

2p+1 ,
p = 1, 2, .... In such a system charged excitations are
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present with fractional charge (anyons) and elementary
flux hc

e . Furthermore the phenomenon of fractionaliza-
tion of the elementary flux has been found in the de-
scription of a quantum Hall fluid at non standard fillings
ν = m

mp+2 [1,2], within the context of 2D Conformal Field
Theories (CFT) with a Zm twist.

In references [4,5] it has been shown that the presence
of a Z2 symmetry accounts for more general boundary
conditions for the propagating electron fields which arise
in quantum Hall systems in the presence of impurities or
defects. Furthermore such a symmetry is present also in
the fully frustrated XY (FFXY) model or equivalently,
see references [6,7], in two dimensional Josephson junction
arrays (JJA) with half flux quantum 1

2
hc
2e threading each

square cell and accounts for the degeneracy of the ground
state.

It is interesting to notice that it is possible to gener-
ate non trivial topologies, i.e. the torus, in the context of
a CFT approach, which allows to construct (see Sect. 4)
a ground state wave function, whose center of mass de-
scribes a coherent superposition of localized states sharing
all the non trivial global properties of the order parameter.
In particular for the FFXY model they are shown here to
be closely related to the presence of half flux quanta, also
viewed as topological defects. Furthermore such a con-
struction allows also to describe the fluctuations in 2D of
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the order parameter and its power law behavior at criti-
cality. That is shown explicitly in Section 3 for the plane
geometry, through a Coulomb gas description of logarith-
mically interacting vortices.

The aim of this paper is to show that the twisted model
(TM) well adapts to describe the phenomenology of fully
frustrated JJL with a topological defect and to analyze the
implications of “closed” geometries on the ground state
global properties.

The paper is organized as follows:

– In Section 2 we introduce the physics of a fully frus-
trated JJL evidencing the underlying Z2 symmetry
and then present the modified ladder with a topologi-
cal defect.

– In Section 3 we describe the role played by such a
symmetry in the construction of the TM model and
its relation with the ladder physics. Furthermore the
degeneracy of the ground state appears to be closely
related to the number of excitations (primary fields)
of the CFT description.

– In Section 4 the symmetry properties of the ground
state conformal blocks are analyzed and its relation
with their topological properties shown.

– In Section 5 a brief summary of the results is presented
together with some comments and suggestions.
In the Appendix the TM conformal blocks are explic-
itly given in terms of its boundary states (BS) con-
tent [4,5].

2 Josephson junction ladder
with a topological defect

In this section, after describing the general properties of a
ladder of Josephson junctions as drawn in Figure 1, we in-
troduce an interaction of the charges (Cooper pairs) with
a magnetic impurity (defect), as drawn in Figure 2. With
each site i we associate a phase ϕi and a charge 2eni, rep-
resenting a superconducting grain coupled to its neighbors
by Josephson couplings; ni and ϕi are conjugate variables
satisfying the usual phase-number commutation relation.
The Hamiltonian describing the system is given by the
quantum phase model (QPM):

H = −EC
2

∑

i

(
∂

∂ϕi

)2

−
∑

〈ij〉
Eij cos

(
ϕi − ϕj −Aij

)
, (2.1)

where EC = (2e)2

C (C being the capacitance) is the charg-
ing energy at site i, while the second term is the Josephson
coupling energy between sites i and j and the sum is over
nearest neighbors. Aij = 2π

Φ0

∫ j
i A·dl is the line integral

of the vector potential associated to an external magnetic
field B and Φ0 = hc

2e is the magnetic flux quantum. The
gauge invariant sum around a plaquette is

∑
p Aij = 2πf

Φ

ϕ

X 

X 

 

X 

X 

X 

X 

X 

X 

X 

X 

° ° ° ° 

° ° ° °

i j 

i 
E ij 

Fig. 1. Josephson junction ladder.
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Fig. 2. JJL with an impurity.

with f = Φ
Φ0

, where Φ is the flux threading each plaquette
of the ladder. Let us label the phase fields on the two legs
with ϕ

(a)
i , a = 1, 2 and assume Eij = Ex for horizontal

links and Eij = Ey for vertical ones. Let us also make the
gauge choice Aij = +πf for the upper links, Aij = −πf
for the lower ones and Aij = 0 for the vertical ones, which
corresponds to a vector potential parallel to the ladder
and taking opposite values on upper and lower branches.

Thus the effective quantum Hamiltonian (2.1) can be
written as [3]:

−H =
EC
2

∑

i

⎡

⎣
(

∂

∂ϕ
(1)
i

)2

+

(
∂

∂ϕ
(2)
i

)2
⎤

⎦

+
∑

i

[
Ex

∑

a=1,2

cos
(
ϕ

(a)
i+1 − ϕ

(a)
i + (−1)a πf

)

+ Ey cos
(
ϕ

(1)
i − ϕ

(2)
i

)]
. (2.2)

The correspondence between such Hamiltonian and our
TM model can be best shown performing the change of
variables: ϕ(1)

i = Xi+φi, ϕ
(2)
i = Xi−φi, so equation (2.2)

can be cast in the form:

−H =
EC
2

∑

i

[(
∂

∂Xi

)2

+
(

∂

∂φi

)2
]

+
∑

i

[
2Ex cos (Xi+1 −Xi) cos

(
φi+1 − φi − πf

)

+Ey cos (2φi)] , (2.3)

where Xi, φi (i.e. ϕ(1)
i , ϕ(2)

i ) are only phase deviations of
each order parameter from the commensurate phase and
should not be identified with the phases of the supercon-
ducting grains [3].
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When f = 1
2 and EC = 0 (classical limit) the ground

state of the 1D frustrated quantum XY (FQXY) model
displays — in addition to the continuous U(1) symmetry
of the phase variables — a discrete Z2 symmetry associ-
ated with an antiferromagnetic pattern of plaquette chi-
ralities χp = ±1, measuring the two opposite directions of
the supercurrent circulating in each plaquette. Thus it has
two symmetric, energy degenerate, ground states charac-
terized by currents circulating in the opposite directions
in alternating plaquettes. For small EC there is a gap for
creation of kinks in the antiferromagnetic pattern of χp
and the ground state has quasi long range chiral order.
The evidence for a chiral phase in Josephson junction lad-
ders has been investigated in reference [8] while a field
theoretical description of chiral order is developed in [9].

Performing the continuum limit of the Hamilto-
nian (2.3):

−H =
EC
2

∫
dx

[(
∂

∂X

)2

+
(
∂

∂φ

)2
]

+
∫
dx

[
Ex

(
∂X

∂x

)2

+ Ex

(
∂φ

∂x
− π

2

)2

+ Ey cos (2φ)

]

(2.4)

we see that the X and φ fields are decoupled. In fact
the X term of the above Hamiltonian is that of a free
quantum field theory while the φ one coincides with the
quantum sine-Gordon model. Through an imaginary-time
path-integral formulation of such a model [10] it can be
shown that the 1D quantum problem maps into a 2D clas-
sical statistical mechanics system, the 2D fully frustrated

XY model, where the parameter α =
(
Ex

EC

)1/2

plays the
role of an inverse temperature [3]. We work in the regime
Ex � Ey where the ladder is well described by a CFT
with central charge c = 2.

We are now ready to introduce the modified ladder as
represented in Figure 2. In order to do so let us first re-
quire the compactification of the ϕ(a) variables in order
to recover the angular nature of the up and down fields.
In such a way the XY-vortices, causing the Kosterlitz-
Thouless transition, are recovered. Also let us indicate
the compactified phases ϕ(1), ϕ(2) as ϕ(1)

L , ϕ(2)
R respectively

(where L,R stay for left, right components). As a second
step let us introduce at point x = 0 a magnetic impurity
which couples the up and down phases through its inter-
action with the Cooper pairs of the two legs (see Fig. 2).
In the limit of strong coupling, that is in the full screening
case, such an interaction gives rise to non trivial boundary
conditions for the fields [4]:

ϕ
(1)
L (x = 0) = ∓ϕ(2)

R (x = 0) − ϕ0. (2.5)

It is interesting to notice that such a condition is natu-
rally satisfied by the twisted field φ (z) of our TM model
(see Eq. (3.8)). Furthermore such a field describes both the

left moving component ϕ(1)
L and the right moving one ϕ(2)

R ,
which naturally appear in a folded description of a system
with a boundary. In fact our TM results in a chiral descrip-
tion of the system just described, in terms of the chiral
fieldsX and φ (see Eqs. (3.7, 3.8)). Further details on such
an issue are given in Section 3 and in the Appendix, where
the relevant chiral fields ϕ(a)

e,o (x) = ϕ
(a)
L (x) ± ϕ

(a)
R (−x),

a = 1, 2, which emerge from such conditions, are explic-
itly constructed, by using the folding procedure [4,5]. In
particular we adopt the m-reduction technique [2] which
accounts for these non trivial boundary conditions for the
JJ ladder due to the presence of a topological defect. Fur-
thermore its realization on closed geometries could be
relevant for the description of JJAs with non trivial
topologies, which are believed to provide a physical im-
plementation of an ideal quantum computer [11] because
of the topological ground state degeneracy which appears
to be “protected” from external perturbations [12,13].

In a forthcoming paper [7] we will be also studying
in detail two dimensional systems with frustration, the
fully frustrated XY model and a two dimensional array
of Josephson junctions in an external magnetic field with
half flux quantum per cell. Such frustrated systems repre-
sent a two dimensional generalization of the linear chain
of frustrated plaquettes considered here. Furthermore the
phase diagram of such systems [14,15] can be simply un-
derstood within our TM description. Recently conformal
field theory techniques have been applied as well [6,16,17];
our work follows such a line.

3 The twisted model

We are now ready to show the main steps of our construc-
tion.

1. We first construct the bosonic theory, i.e. the TM, and
show that its energy momentum tensor fully repro-
duces the Hamiltonian of equation (2.4) for the JJL.
That allows us to describe the JJL excitations in terms
of the primary fields Vα (z) given later on in this sec-
tion and in Section 4 for the torus topology.

2. Then by using standard conformal field theory tech-
niques we show that it is possible to construct the
N -vertices correlator for the torus topology in 2D (ba-
sically by letting the edge to evolve in “time” and to
interact with external vertex operators placed at dif-
ferent points). Throughout this paper we will assume
that a suitable correlator is apt to describe the ground
state wave function of the JJA at T = 0 temperature.
We must notice that such an assumption is supported
by the plasma description of the system ground state
on the plane, given later on in this section. An analysis
of the symmetry properties of its center of mass wave
function (conformal blocks), which emerge in the pres-
ence of vortices carrying half quantum of flux (1

2

(
hc
2e

)
),

will be given in Section 4.

In this section we recall those aspects of the TM which
are relevant for the fully frustrated (f = 1

2 ) JJL presented
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in the previous section. We focus on the m-reduction pro-
cedure [2] for the special m = 2 case (see Ref. [1] for the
general case), since we are interested in a system with a
Z2 symmetry. We showed in references [2,4] that such a
theory well adapts to describe a system consisting of two
parallel layers of 2D electrons gas in a strong perpendicu-
lar magnetic field coupled via a defect line (a topological
defect or topological twist). The two layers edges appear
coupled at a contact point carrying a magnetic impurity
(twist). The bulk electrons isospin interacts with the mag-
netic impurity and in the limit of strong coupling non triv-
ial boundary conditions, of the Z2 type in the considered
case, for the relevant fields emerge. In this paper we choose
the “bosonic” theory, which well adapts to the description
of a system with Cooper pairs of electric charge 2e in the
presence of a topological defect, i.e. a fully frustrated JJL.
As pointed out in the previous section, its ground state
can be viewed as a sequence of opposite current chiralities
in adjacent plaquettes, in close analogy with the checker-
board ground state of the two dimensional JJAs [18]. To
each of the two legs (edges) of the ladder we assigned a
chirality, making a correspondence between up-down leg
and left-right chirality states. In the Appendix each phase
field ϕ(a) is written as a sum of two fields of opposite chi-
rality defined on an half-line, because of the presence of a
defect at x = 0. Within a “bosonization” framework it is
shown there how it is possible to reduce to a problem with
two chiral fields ϕ(a)

e , a = 1, 2, each defined on the whole
x-axis, and the corresponding dual fields. Now we identify
in the continuum such chiral phase fields ϕ(a)

e , a = 1, 2,
each defined on the corresponding leg, with the two chiral
fields Q(a), a = 1, 2 of our CFT, the TM, with central
charge c = 2. For clarity sake we must observe that such
an identification strongly relies on the fact that the log-
arithmic phase fluctuations of the order parameter in 2D
can be fully expressed in terms of correlators of the CFT
Q(a) (z) fields.

In order to construct the fields Q(a) for the TM, we
start from a bosonic CFT with c = 1 described in terms
of a scalar chiral field Q compactified on a circle with
radius R2 = 2. It is explicitly given by:

Q(z) = q − i p lnz + i
∑

n�=0

an
n
z−n (3.6)

with an, q and p satisfying the commutation relations
[an, an′ ] = nδn,n′ and [q, p] = i; its primary fields are
the vertex operators Uαl (z) =: eiαlQ(z) : where αl = l√

2
,

l = 1, 2. It is possible to give a plasma description through
the relation |ψ|2 = e−βHeff where ψ (z1, ..., zN) = 〈Nαl|
∏N
i=1 U

α
l (zi) |0〉 =

∏N
i<j=1 (zi − zj)

l2
2 is the ground state

wave function. It can be immediately seen that Heff =
−l2∑N

i<j=1 ln |zi − zj| and β = 2
R2 = 1, that is only vor-

ticity v = 1, 2 vortices are present in the plasma.
From such a CFT (mother theory), using the

m-reduction procedure, which consists in considering the
subalgebra generated only by the modes in equation (3.6)

which are a multiple of an integer m, we get a c = m
orbifold CFT (daughter theory, i.e. the TM). Then the
fields in the mother CFT can be organized into compo-
nents which have well defined transformation properties
under the discrete Zm (twist) group, which is a symmetry
of the TM. By using the mapping z → z1/m and by mak-
ing the identifications anm+l −→ √

man+l/m, q −→ 1√
m
q

the c = m CFT (daughter theory) is obtained.
Its primary fields content, for the special m = 2 case,

can be expressed in terms of a Z2-invariant scalar field
X(z), given by

X(z) =
1
2

(
Q(1)(z) +Q(2)(z)

)
, (3.7)

describing the continuous phase sector of the new theory,
and a twisted field

φ(z) =
1
2

(
Q(1)(z) −Q(2)(z)

)
, (3.8)

which satisfies the twisted boundary conditions
φ(eiπz) = −φ(z) [1]. More explicitly such a field can
be written in terms of the left and right moving com-
ponents ϕ(1)

L , ϕ(2)
R ; then the boundary conditions given

in equation (2.5) are fully described by the boundary
conditions for φ. This will be more evident for closed
geometries, i.e. for the torus case, where the magnetic
impurity gives rise to a line defect so allowing us to
resort to the folding procedure and introduce boundary
states [4,5] (see Appendix for details).

Furthermore the fields in equations (3.7, 3.8) coincide
with the ones introduced in equation (2.4). In fact the
energy momentum tensor for such fields given in equa-
tion (3.13) fully reproduces the second quantized Hamil-
tonian of equation (2.4) as we will see at the end of
the section. Let us notice that the angular nature of the
phase fields in our theory takes into account also the pres-
ence of vortices, i.e. topological excitations which cause a
Kosterlitz-Thouless transition, which are responsible for
the periodicity of the phase diagram and which were not
considered in the analysis of reference [3].

The whole TM theory decomposes into a tensor prod-
uct of two CFTs, a twisted invariant one with c = 3

2 and
the remaining c = 1

2 one realized by a Majorana fermion
in the twisted sector. In the c = 3

2 sub-theory the primary
fields are composite vertex operators V (z) = Uαl

X (z)ψ (z)
or Vqh (z) = Uαl

X (z)σ (z), where

Uαl

X (z) =
1√
z

: eiαlX(z) : (3.9)

is the vertex of the continuous sector with αl = l
2 ,

l = 1, ..., 4 for the SU(2) Cooper pairing symmetry used
here. In order to give a physical meaning to the vertices
shown in equation (3.9) we consider at the end of this
Section the N -point correlator on the plane. As a result
we obtain a plasma description with logarithmically in-
teracting vortices in the ground state of the JJ system, so
reproducing the properties of the fluctuations of the order
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parameter. For clarity sake we must further comment that,
even though the global properties of the order parameter
are already encrypted in the non trivial braiding relations
of the above vertices (through the Bohm-Aharonov phase
picked up when exchanging them), it is more instructive
for the condensed matter physicist to analyze them for
the non trivial torus topology. In fact by construction the
non perturbative ground state emerges there naturally as
a coherent superposition of localized states, together with
its global properties and it will be presented in Section 4.

The corresponding energy-momentum tensor is:

TX (z) = −1
2

(∂X)2 . (3.10)

Regarding the other component, the highest weight state
in the isospin sector, it can be classified by the two chiral
operators:

ψ (z) =
1

2
√
z

(
: ei

√
2φ(z) : + : ei

√
2φ(−z) :

)
,

ψ (z) =
1

2
√
z

(
: ei

√
2φ(z) : − : ei

√
2φ(−z) :

)
; (3.11)

which correspond to two c = 1
2 Majorana fermions with

Ramond (invariant under the Z2 twist) or Neveu-Schwartz
(Z2 twisted) boundary conditions [1,2] in a fermionized
version of the theory. Let us point out that the energy-
momentum tensor of the Ramond part of the isospin sector
develops a cosine term:

Tψ (z) = −1
4

(∂φ)2 − 1
16z2

cos
(
2
√

2φ
)
. (3.12)

The Ramond fields are the degrees of freedom which sur-
vive after the tunnelling and the parity symmetry, which
exchanges the two Ising fermions, is broken.

So the whole energy-momentum tensor within the
c = 3

2 sub-theory is:

T = TX (z) + Tψ (z) = −1
2

(∂X)2

− 1
4

(∂φ)2 − 1
16z2

cos
(
2
√

2φ
)
. (3.13)

The correspondence with the Hamiltonian of equa-
tion (2.4) is more evident once we observe that the
isospin current ∂φ appearing above coincides with the
term (∂φ− π

2 ) of equation (2.4), since the π
2 -term coming

from the frustration condition, here it appears as a zero
mode, i.e. a classical mode. That is the frustration π

2 (in
general πf) of the ladder cells here in the TM construction
is related to the order of the twist Z2 (Z1/f in the gen-
eral case). Besides the fields appearing in equation (3.11),
there are the σ (z) fields, also called the twist fields, which
appear in the quasi-hole primary fields Vqh (z). Their pres-
ence is a peculiarity of the fully frustrated XY model in
which they appear at the corner where two domain walls
meet [6]. The twist fields have non local properties and

decide also for the non trivial properties of the vacuum
state, which in fact can be twisted or not in our formal-
ism. Such a property for the vacuum is more evident for
the torus topology, where the σ-field is described by the
conformal block χ 1

16
(see Appendix).

The evidence of a phase transition in ladder systems
at c = 3

2 has been investigated in [19] within a CFT
framework. Within this framework the ground state wave
function for the plane is described as a correlator of N2e

Cooper pairs:

〈N2eα|
N2e∏

i=1

V (zi) |0〉 =
N2e∏

i<i′=1

(zi − zi′ )Pf
(

1
zi − zi′

)

(3.14)
where Pf

(
1

zi−zi
′

)
= A

(
1

z1−z2
1

z3−z4 ...
)

is the antisym-
metrized product over pairs of Cooper pairs, so repro-
ducing well known results [20]. In a similar way we also
are able to evaluate correlators of N2e Cooper pairs in
the presence of (quasi-hole) excitations [1,20] with non
Abelian statistics [21].

It is now interesting to notice that the charged con-
tribution appearing in the correlator of Ne electrons
is just: 〈Neα|

∏Ne

i=1 U
1/2
X (zi) |0〉 =

∏Ne

i<i′=1
(zi − zi′ )

1/4,
giving rise to a vortices plasma with Heff =
− 1

4

∑N
i<j=1 ln |zi − zj| at the corresponding temperature

β = 2
R2

X
= 2, that is it describes vortices with vorticity

v = 1
2 ! From the above relations it clearly emerges how

the order parameter fluctuations in 2D are so faithfully
reproduced within our TM.

4 Symmetry properties of the TM conformal
blocks

In Section 3 we identified our chiral fields Q(a) with the
continuum limit of the Josephson phase ϕ(a) defined on
the two legs of the ladder respectively and considered non
trivial boundary conditions at its ends, so constructing a
version in the continuum of the discrete system. Starting
from the primary fields Vα (z) given in the previous section
we can now construct the non perturbative ground state
wave function of the JJ system for the torus topology.
It turns out that by construction it results as a coherent
superposition of Gaussian states with all the non trivial
global properties of the order parameter. In fact by us-
ing standard conformal field theory techniques it is now
possible to generate the torus topology, starting from the
edge theory, just defined in the previous section. That is
realized by evaluating the N -vertices correlator

〈n|Vα (z1) . . . Vα (zN) e2πiτL0 |n〉 , (4.15)

where Vα (zi) is the generic primary field of Section 3 rep-
resenting the excitation at zi, L0 is the Virasoro genera-
tor for dilatations and τ the proper time. The neutrality
condition

∑
α = 0 must be satisfied and the sum over

the complete set of states |n〉 is indicating that a trace
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must be taken. Even though for the present paper it is
not necessary to go through such a calculation, it is very
illuminating for the non expert reader to pictorially rep-
resent the above operation in terms of an edge state (that
is a primary state defined at a given τ ) which propagates
interacting with external fields at z1 . . . zN and finally get-
ting back to itself. In such a way a 2D surface is generated
with the torus topology. It is interesting to observe that
such a procedure is equivalent to the coherent insertion
of correlated relevant vortices (as provided by the CFT
description) at positions z1 . . . zN , as they appear in the
non perturbative ground state of the physical JJ system.
From such a picture it is evident then how the degener-
acy of the non perturbative ground state is closely related
to the number of primary states. Furthermore, since in
this paper we are interested in the understanding of the
topological properties of the system, we can consider only
the center of mass contribution in the above correlator,
so neglecting its short distances properties. To such an
extent the one-point functions are extensively reported in
the following.

On the torus [2] the TM primary fields are described
in terms of the conformal blocks of the Z2-invariant c = 3

2

subtheory and of the non invariant c = 1
2 Ising model, so

reflecting the decomposition on the plane outlined in the
previous section. The following characters

χ̄0(0|τ) =
1
2

(√
θ3(0|τ)
η(τ )

+

√
θ4(0|τ )
η(τ )

)
,

χ̄ 1
2
(0|τ) =

1
2

(√
θ3(0|τ)
η(τ )

−
√
θ4(0|τ )
η(τ )

)
,

χ̄ 1
16

(0|τ) =

√
θ2(0|τ)
2η(τ )

express the primary fields content of the Ising model with
Neveu–Schwartz (Z2 twisted) boundary conditions, while

χ
c=3/2
(0) (0|wc|τ ) =χ0(0|τ)K0(wc|τ ) + χ 1

2
(0|τ)K2(wc|τ ),

(4.16)

χ
c=3/2
(1) (0|wc|τ ) =χ 1

16
(0|τ ) (K1(wc|τ ) +K3(wc|τ )) ,

(4.17)

χ
c=3/2
(2) (0|wc|τ ) =χ 1

2
(0|τ )K0(wc|τ ) + χ0(0|τ)K2(wc|τ )

(4.18)

represent those of the Z2-invariant c = 3
2 CFT. They are

given in terms of a “charged” Kα(wc|τ ) contribution, (see
definition given below) and a “isospin” one χβ(0|τ), (the
conformal blocks of the Ising Model), where wc = 1

2πi ln zc
is the torus variable of “charged” component. Notice that
the corresponding argument of the isospin block is wn = 0
everywhere.

In order to understand the physical significance of the
c = 2 conformal blocks in terms of the charged low en-
ergy excitations of the system, let us evidence their elec-
tric charge (magnetic flux contents in the dual theory,
which is obtained by exchanging the compactification ra-
dius R2

e → R2
m in the charged sector of the CFT). In order

to do so let us consider the “charged” sector conformal
blocks appearing in equations (4.16–4.18):

K2l+i(wc|τ ) =
1

η (τ )
Θ

[
2l+i

4

0

]
(2wc|4τ), ∀ (l, i) ∈ (0, 1)2 .

(4.19)
They correspond to primary fields with conformal dimen-
sions

h2l+i =
1
2
α2

(l,i) =
1
2

(
2l+ i

2
+ 2δ(l+i),0

)2

and electric charges 2e(α(l,i)

RX
), magnetic charges in the

dual theory hc
2e

(
α(l,i)RX

)
, RX = 1 being the compactifica-

tion radius. More explicitly the electric charges (magnetic
charges in the dual theory) are the following:

l = 0, i = 0, qe = 4e,
(
qm = 2

hc

2e

)
,

l = 1, i = 0, qe = 2e,
(
qm =

hc

2e

)
,

l = 0, i = 1, qe = e,

(
qm =

1
2
hc

2e

)
,

l = 1, i = 1, qe = 3e,
(
qm =

3
2
hc

2e

)
. (4.20)

If we now turn to the whole c = 2 theory, the characters
of the twisted sector are given by:

χ+
(0)(0|wc|τ) =χ̄ 1

16
(0|τ)

(
χ
c=3/2
0 (0|wc|τ ) + χ

c=3/2
2 (0|wc|τ )

)

=χ̄ 1
16

(
χ0 + χ 1

2

)
(K0 +K2) , (4.21)

χ+
(1)(0|wc|τ) =

(
χ̄0(0|τ ) + χ̄ 1

2
(0|τ)

)
χ
c=3/2
1 (0|wc|τ )

=χ 1
16

(
χ̄0 + χ̄ 1

2

)
(K1 +K3) , (4.22)

χ−
(0)(0|wc|τ) =χ̄ 1

16
(0|τ)

(
χ
c=3/2
0 (0|wc|τ ) − χ

c=3/2
2 (0|wc|τ )

)

=χ̄ 1
16

(
χ0 − χ 1

2

)
(K0 −K2) , (4.23)

χ−
(1)(0|wc|τ) =

(
χ̄0(0|τ ) − χ̄ 1

2
(0|τ)

)
χ
c=3/2
1 (0|wc|τ )

=χ 1
16

(
χ̄0 − χ̄ 1

2

)
(K1 +K3) . (4.24)
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Furthermore the characters of the untwisted sector are [2]:

χ̃+
(0)(0|wc|τ ) = χ̄0(0|τ )χc=3/2

(0) (0|wc|τ )
+ χ̄ 1

2
(0|τ)χc=3/2

(2) (0|wc|τ )
=
(
χ̄0χ0 + χ̄ 1

2
χ 1

2

)
K0 +

(
χ̄0χ 1

2
+ χ̄ 1

2
χ0

)
K2,

(4.25)

χ̃+
(1)(0|wc|τ ) = χ̄0(0|τ )χc=3/2

(2) (0|wc|τ )
+ χ̄ 1

2
(0|τ)χc=3/2

(0) (0|wc|τ )
=
(
χ̄0χ 1

2
+ χ̄ 1

2
χ0

)
K0 +

(
χ̄0χ0 + χ̄ 1

2
χ 1

2

)
K2,

(4.26)

χ̃−
(0)(0|wc|τ ) = χ̄0(0|τ )χc=3/2

(0) (0|wc|τ )
− χ̄ 1

2
(0|τ)χc=3/2

(2) (0|wc|τ )
=
(
χ̄0χ0 − χ̄ 1

2
χ 1

2

)
K0 +

(
χ̄0χ 1

2
− χ̄ 1

2
χ0

)
K2,

(4.27)

χ̃−
(1)(0|wc|τ ) = χ̄0(0|τ )χc=3/2

(2) (0|wc|τ )
− χ̄ 1

2
(0|τ)χc=3/2

(0) (0|wc|τ )
=
(
χ̄0χ 1

2
− χ̄ 1

2
χ0

)
K0 +

(
χ̄0χ0 − χ̄ 1

2
χ 1

2

)
K2,

(4.28)

χ̃(0)(0|wc|τ ) = χ̄ 1
16

(0|τ )χc=3/2
(1) (0|wc|τ )

= χ̄ 1
16
χ 1

16
(K1 +K3) . (4.29)

Such a factorization is a consequence of the parity selec-
tion rule (m-ality), which gives a gluing condition for the
“charged” and “isospin” excitations. The conformal blocks
given above represent the collective states of highly cor-
related vortices, which appear to be incompressible. In
order to show the corresponding symmetry properties it
is useful to give a pictorial description of the conformal
blocks appearing in equation (4.19). To such an extent let
us imagine to cut the torus along the A-cycle. The differ-
ent primary fields then can be seen as excitations which
propagate along the B-cycle and interact with the external
Cooper pair at point wc. We can now test the symmetry
properties of the characters of the theory (given above) by
simply evaluating the Bohm–Aharonov phase they pick up
while a Cooper pair is taken along the closed A-cycle. In
order to do that, it is important to notice that the trans-
port of the “Cooper pair” from the upper (with isospin up)
leg to the down (with isospin down) leg can be realized by
a translation of the variables wc and wn, which must be
identical for the “charged” and the “isospin” sectors. In
fact it turns out that the translation with ∆wc = ∆wn al-
lows us to describe, for example in the twisted sector, the
charge transport from leg 1 (isospin up) to leg 2 (isospin
down) through the crossing point shown in Figure 2.

So under a 2π-rotation the torus variables transform
as ∆wc = ∆wn = 1 and it is easy to check that:

K0,2(wc + 1|τ) = K0,2(wc|τ ),
K1,3(wc + 1|τ) = −K1,3(wc|τ). (4.30)

Let us observe that the change in sign in the last relation
of equation (4.30) is strictly related to the presence in
the spectrum of excitations carrying fractionalized charge
quanta. Now, turning on also the isospin sector contribu-
tion in the Cooper pair transport along the A-cycle, we
obtain in a straightforward way:

χ0, 12
(1|τ ) = χ0, 12

(0|τ), χ 1
16

(1|τ) = iχ 1
16

(0|τ ) (4.31)

and the same is true for the characters χ̄β . Notice that the
phase factor i = eiπ/2 appearing above in the transport of
the isospin “cloud” by the χ 1

16
character is again due to

the presence of a half-flux.
As a result the ground state described by equa-

tion (4.29):

χ̃(0)(0|wc|τ ) = χ̄ 1
16
χ 1

16
(K1 +K3) (4.32)

does not change sign under the transport of a Cooper pair
along the closed A-cycle by the amount ∆wc = ∆wn = 1.
In fact the negative sign coming from the continuous phase
sector is compensated by the negative sign coming from
the other sector! Of course the same is true for all the other
characters of the untwisted sector, i.e. we cannot trap a
half flux quantum in the hole in the untwisted sector.

Instead in the twisted sector the ground state wave-
functions show a non trivial behavior. In fact under
∆wc = ∆wn = 1

χ±
(0)(1|wc + 1|τ) = +iχ±

(0)(0|wc|τ ),

χ±
(1)(1|wc + 1|τ) = −iχ±

(1)(0|wc|τ ) .

The change in phase given above evidences the presence
of a half flux quantum in the hole as it will be clear be-
low. In fact in the twisted case geometry (see Fig. 2) the
Cooper pair flows along the ladder and changes isospin in
a 2π-period, so implying that in such a case the transport
of a Cooper pair from a given point w on the A-cycle to
the same point has a 4π-period, that is it corresponds to
∆wc = ∆wn = 2. Under this transformation the char-
acters given above get the following non trivial Bohm-
Aharonov phase:

χ±
(0,1)(2|wc + 2|τ ) = −χ±

(0,1)(0|wc|τ ), (4.33)

so explicitly evidencing the trapping of 1
2

(
hc
2e

)
in the hole.

It is worthwhile to notice that the properties just dis-
cussed are independent of the short distance properties of
the vortices plasma, the only crucial requirement for its
stability being the neutrality condition.

5 Brief summary with comments

In this paper we presented a simple collective description
of a ladder of Josephson junctions with a macroscopic half
flux quantum trapped in the hole. It was shown how the
phenomenon of flux fractionalization takes place within
the context of a 2D conformal field theory with a Z2 twist,
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the TM. The presence of a Z2 symmetry indeed accounts
for more general boundary conditions for the fields de-
scribing the Cooper pairs propagating on the ladder legs,
which arise from the presence of a magnetic impurity
strongly coupled with the Josephson phases. For closed
geometries and in the limit of the continuum the phase
fields ϕ(a) defined on the two legs were identified with the
two chiral Fubini fields Q(a) of our TM, and a correspon-
dence between the energy momentum density tensor for
such fields (or better the X and φ fields of Eqs. (3.7–3.8))
and the Hamiltonian of equation (2.4) traced. For such ge-
ometries it was also indicated that the Kosterlitz-Thouless
vortices were recovered.

Furthermore it was shown that for closed geometries
the JJL with an impurity gives rise to a line defect, which
can be turned into a boundary state after employing the
folding procedure. That enabled us to derive the low en-
ergy charged excitations of the system as provided by our
description, with the superconducting phase characterized
by condensation of 4e charges and gapped 2e excitations.
Finally, by simply evaluating a Bohm-Aharonov phase, it
has been evidenced that non trivial symmetry properties
for the conformal blocks emerge due to the presence in the
spectrum of fractionalized flux quanta 1

2

(
hc
2e

)
. As it has

been explained before, that signals the presence of a topo-
logical defect in the twisted sector of the TM. The ques-
tion of an emerging topological order in the ground state
together with the possibility of providing protected states
for the implementation of a solid state qubit has been
addressed elsewhere [7,13]. Notice also that the different
behavior of the 2e and 4e excitations is well evidenced by
the Bohm-Aharonov phase. Indeed while the transport of
a 2e along the cycle induces a-1 phase factor, in the 4e ex-
citation transport the phase factor is trivial [11]. This is
the consequence of the symmetry of the 4e with respect
to the leg index. Also Josephson junctions ladders with
annular geometry have been fabricated within the trilayer
Nb/Al-AlOx/Nb technology and experimentally investi-
gated [22]. So in principle it could be simple to conceive
an experimental setup in order to test our predictions.

It is interesting to notice that the presence of a topo-
logical defect has been experimentally evidenced very re-
cently for a two layers quantum Hall system, by measuring
the conduction properties between two edge states of the
system [23].

We conclude by observing that it would be useful to
extend our approach to a generic frustration f = 1

m .

We thank Ciro Nappi and Carlo Camerlingo for stimulating
discussions and suggestions.

Appendix: TM boundary states

Let us now recall briefly the TM boundary states (BS)
recently constructed in [4].

For closed geometries, that is for the torus, the JJL
with an impurity gives rise to a line defect in the bulk.
In order to describe it we resort to the folding procedure.

Such a procedure is used in the literature to map a prob-
lem with a defect line (as a bulk property) into a boundary
one, where the defect line appears as a boundary state of
a theory which is not anymore chiral and its fields are de-
fined in a reduced region which is one half of the original
one. Our approach, the TM, is a chiral description of that,
where the chiral φ field defined in (−L/2, L/2) describes
both the left moving component and the right moving one
defined in (−L/2, 0), (0, L/2) respectively, in the folded
description [4,5]. Furthermore to make a connection with
the TM we consider more general gluing conditions:

φL(x = 0) = ∓φR(x = 0) − ϕ0

the −(+) sign staying for the twisted (untwisted) sec-
tor. We are then allowed to use the boundary states
given in [24] for the c = 1 orbifold at the Ising2 ra-
dius. The X field, which is even under the folding pro-
cedure, does not suffer any change in boundary condi-
tions [4]. Let us now write each phase field as the sum
ϕ(a) (x) = ϕ

(a)
L (x) + ϕ

(a)
R (x) of left and right moving

fields defined on the half-line because of the defect lo-
cated in x = 0. Then let us define for each leg the two chi-
ral fields ϕ(a)

e,o (x) = ϕ
(a)
L (x) ± ϕ

(a)
R (−x), each defined on

the whole x-axis [25]. In such a framework the dual fields
ϕ

(a)
o (x) are fully decoupled because the corresponding

boundary interaction term in the Hamiltonian does not
involve them [26]; they are involved in the definition of the
conjugate momenta Π(a) =

(
∂xϕ

(a)
o

)
=
(

∂

∂ϕ
(a)
e

)
present

in the quantum Hamiltonian. Performing the change of
variables ϕ(1)

e = X + φ, ϕ(2)
e = X − φ (ϕ(1)

o = X + φ,
ϕ

(2)
o = X − φ for the dual ones) we get the quantum

Hamiltonian (2.4) but, now, all the fields are chiral ones.
It is interesting to notice that the condition (2.5) is

naturally satisfied by the twisted field φ (z) of our twisted
model (TM) (see Eq. (3.8)).

The most convenient representation of such BS is the
one in which they appear as a product of Ising and
c = 3

2 BS. These last ones are given in terms of the BS
|α〉 for the charged boson and the Ising ones |f〉, | ↑〉, | ↓〉,
according to (see Ref. [27] for details):

|χc=3/2
(0) 〉 = |0〉 ⊗ | ↑〉 + |2〉 ⊗ | ↓〉 (6.34)

|χc=3/2
(1) 〉 =

1
21/4

(|1〉 + |3〉) ⊗ |f〉 (6.35)

|χc=3/2
(2) 〉 = |0〉 ⊗ | ↓〉 + |2〉 ⊗ | ↑〉. (6.36)

Such a factorization naturally arises already for the TM
characters [2].

The vacuum state for the TM model corresponds to the
χ̃(0) character which is the product of the vacuum state
for the c = 3

2 sub-theory and that of the Ising one. From
equations (4.25, 4.27) we can see that the lowest energy
state appears in two characters, so a linear combination
of them must be taken in order to define a unique vacuum
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state. The correct BS in the untwisted sector are:

|χ̃((0,0),0)〉 =
1√
2

(
|χ̃+

(0)〉 + |χ̃−
(0)〉
)

=
√

2(|0〉 ⊗ | ↑ ↑̄〉 + |2〉 ⊗ | ↓ ↑̄〉) (6.37)

|χ̃((0,0),1)〉 =
1√
2

(
|χ̃+

(0)〉 − |χ̃−
(0)〉
)

=
√

2(|0〉 ⊗ | ↓ ↓̄〉 + |2〉 ⊗ | ↑ ↓̄〉) (6.38)

|χ̃((1,0),0)〉 =
1√
2

(
|χ̃+

(1)〉 + |χ̃−
(1)〉
)

=
√

2(|0〉 ⊗ | ↓ ↑̄〉 + |2〉 ⊗ | ↑ ↑̄〉) (6.39)

|χ̃((1,0),1)〉 =
1√
2

(
|χ̃+

(1)〉 − |χ̃−
(1)〉
)

=
√

2(|0〉 ⊗ | ↑ ↓̄〉 + |2〉 ⊗ | ↓ ↓̄〉) (6.40)

|χ̃(0)(ϕ0)〉 =
1

21/4
(|1〉 + |3〉) ⊗ |DO(ϕ0)〉 (6.41)

where we also added the states |χ̃(0)(ϕ0)〉 in which
|DO(ϕ0)〉 is the continuous orbifold Dirichlet boundary
state defined in reference [24]. For the special ϕ0 = π/2
value one obtains:

|χ̃(0)〉 =
1

21/4
(|1〉 + |3〉) ⊗ |ff〉. (6.42)

For the twisted sector we have:

|χ+
(0)〉 = (|0〉 + |2〉) ⊗ (| ↑ f̄〉 + | ↓ f̄〉) (6.43)

|χ+
(1)〉 =

1
21/4

(|1〉 + |3〉) ⊗ (|f ↑̄〉 + |f ↓̄〉) (6.44)

|χ−
(0)〉 = (|0〉 − |2〉) ⊗ (| ↑ f̄〉 − | ↓ f̄〉) (6.45)

|χ−
(1)〉 =

1
21/4

(|1〉 + |3〉) ⊗ (|f ↑̄〉 − |f ↓̄〉). (6.46)

Now, by using as reference state |A〉 the vacuum state
given in equation (6.37), we compute the chiral partition
functions ZAB where |B〉 are all the BS just obtained [4]:

Z〈χ̃((0,0),0) ||χ̃((0,0),0)〉 = χ̃((0,0),0) (6.47)

Z〈χ̃((0,0),0) ||χ̃((1,0),0)〉 = χ̃((1,0),0) (6.48)

Z〈χ̃((0,0),0) ||χ̃((0,0),1)〉 = χ̃((0,0),1) (6.49)

Z〈χ̃((0,0),0) ||χ̃((1,0),1)〉 = χ̃((1,0),1) (6.50)

Z〈χ̃((0,0),0)||χ̃(0)〉 = χ̃(0) (6.51)

Z〈χ̃((0,0),0)||χ+
(0)〉 = χ+

(0) (6.52)

Z〈χ̃((0,0),0)||χ+
(1)〉 = χ+

(1). (6.53)

So we can discuss topological order referring to the char-
acters with the implicit relation to the different boundary
states present in the system. Also we point out that these
BS should be associated to different kinds of linear defects
compatible with conformal invariance.
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